8.2 Shear and Bending-Moment Diagrams: Equation Form

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 1, page 1 of 6

1. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x.

(1) Draw a free-body diagram and find the reactions.

$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \mathrm{R}_{\mathrm{A}}-9$ kip -6 kip $+\mathrm{R}_{\mathrm{B}}=0$
$\zeta+\Sigma \mathrm{M}_{\mathrm{A}}=0:-(9 \mathrm{kip})(3 \mathrm{ft})-(6 \mathrm{kip})(3 \mathrm{ft}+5 \mathrm{ft})+\mathrm{R}_{\mathrm{B}}(3 \mathrm{ft}+5 \mathrm{ft}+7 \mathrm{ft})=0$
Solving gives

$$
\mathrm{R}_{\mathrm{A}}=10 \mathrm{kip} \text { and } \mathrm{R}_{\mathrm{B}}=5 \mathrm{kip}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 1, page 2 of 6

(2) Pass a section through the beam at a point between the left end and the 9-kip force.

(3) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

Solving gives

$$
\mathrm{V}=10 \mathrm{kip} \text { and } \mathrm{M}=10 \mathrm{x} \text { kip.ft }
$$

valid for $0<\mathrm{x}<3 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 1, page 3 of 6

Pass a section through the beam at a point between the 9-kip force and the 6-kip force.
$3 \mathrm{ft}<\mathrm{x}<8 \mathrm{ft}$
(5) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \quad 10 \mathrm{kip}-9 \mathrm{kip}-\mathrm{V}=0 \\
& \zeta+\Sigma \mathrm{M}_{\mathrm{x}}=0: \quad-(10 \mathrm{kip}) \mathrm{x}+(9 \mathrm{kip})(\mathrm{x}-3 \mathrm{ft})+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& V=1 \text { kip } \tag{3}\\
& M=(x+27) k i p \cdot f t \tag{4}
\end{align*}
$$

valid for $3 \mathrm{ft}<\mathrm{x}<8 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 1, page 4 of 6

6) Pass a section through the beam at a point between the 6-kip force and the right end of the beam.

$8 \mathrm{ft}<\mathrm{x}<15 \mathrm{ft}$
(7) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 10 \text { kip }-9 \text { kip }-6 \text { kip }-\mathrm{V}=0 \\
& \begin{array}{r}
ك+\Sigma \mathrm{M}_{\mathrm{x}}=0:-(10 \mathrm{kip}) \mathrm{x}+(9 \mathrm{kip})(\mathrm{x}-3 \mathrm{ft}) \\
+
\end{array}
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& V=-5 \text { kip } \tag{5}\\
& M=(-5 x+75) k i p \cdot f t \tag{6}
\end{align*}
$$

valid for $8 \mathrm{ft}<\mathrm{x}<15 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 1, page 5 of 6

(8) Collect the results from Eqs. 1-6:

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 1, page 6 of 6

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 2, page 1 of 3

2. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x.

(1) Draw a free-body diagram and find the reactions.

$\varsigma+\Sigma \overline{\mathrm{M}}_{\mathrm{A}}=0: \mathrm{M}_{\mathrm{A}}-(28 \mathrm{~N})(7 \mathrm{~m})+20 \mathrm{~N} \cdot \mathrm{~m}=0$
Solving gives

$$
\mathrm{R}_{\mathrm{A}}=28 \mathrm{~N} \text { and } \mathrm{M}_{\mathrm{A}}=176 \mathrm{~N} \cdot \mathrm{~m}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 2, page 2 of 3

(3) Pass a section through the beam at an arbitrary point (located by x)

$$
0<x<14 \mathrm{~m}
$$

(4) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 28 \mathrm{~N}-2 \mathrm{x}-\mathrm{V}=0$
$\varsigma+\Sigma M_{x}=0: 176 N \cdot m-28 x+\left(\frac{x}{2}\right)(2 N / m)(x)+M=0$
Solving gives

$$
\begin{array}{ll}
\mathrm{V}=(-2 \mathrm{x}+28) \mathrm{N} & \leftarrow \text { Ans. } \\
\mathrm{M}=\left(-\mathrm{x}^{2}+28 \mathrm{x}-176\right) \mathrm{N} \cdot \mathrm{~m} & \leftarrow \text { Ans. }
\end{array}
$$

valid for $0<x<14 \mathrm{~m}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 2, page 3 of 3

(5) Plot V and M versus x.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 3, page 1 of 6

3. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x .

(1) Draw a free-body diagram and find the reactions.

$$
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \mathrm{R}_{\mathrm{A}}-100 \mathrm{lb}+\mathrm{R}_{\mathrm{B}}=0
$$

$$
\zeta+\Sigma \mathrm{M}_{\mathrm{A}}=0:-(100 \mathrm{lb})(7 \mathrm{ft}+5 \mathrm{ft})+\mathrm{R}_{\mathrm{B}}(7 \mathrm{ft}+10 \mathrm{ft}+3 \mathrm{ft})=0
$$

Solving gives

$$
\mathrm{R}_{\mathrm{A}}=40 \mathrm{lb} \text { and } \mathrm{R}_{\mathrm{B}}=60 \mathrm{lb}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 3, page 2 of 6

(2) Pass a section through the beam at a point between the left end of the beam and the beginning of the distributed load.

$$
0<\mathrm{x}<7 \mathrm{ft}
$$

(3) Draw a free-body diagram and find the reactions.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 40 \mathrm{lb}-\mathrm{V}=0 \\
& \varsigma+\Sigma \mathrm{M}_{\mathrm{x}}=0:-(40 \mathrm{lb}) \mathrm{x}+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=40 \mathrm{lb} \tag{1}\\
& \mathrm{M}=(40 \mathrm{x}) \mathrm{lb} \cdot \mathrm{ft} \tag{2}
\end{align*}
$$

valid for $0<\mathrm{x}<7 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 3, page 3 of 6

(4) Pass a section through the beam at a point between the beginning and end of the distributed load.

$7 \mathrm{ft}<\mathrm{x}<17 \mathrm{ft}$
(5) Draw a free-body diagram of the portion of the beam to the left of the section and solve for V and M at the section.

$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 40 \mathrm{lb}-(10 \mathrm{lb} / \mathrm{ft})(\mathrm{x}-7 \mathrm{ft})-\mathrm{V}=0$
$\int+\Sigma M_{x}=0:-(40 \mathrm{lb}) x+[(10 \mathrm{lb} / \mathrm{ft})(\mathrm{x}-7 \mathrm{ft})]$

$$
\times\left(\frac{\mathrm{x}-7 \mathrm{ft}}{2}\right)+\mathrm{M}=0
$$

Solving gives

$$
\begin{align*}
& V=(-10 x+110) l b \tag{3}\\
& M=\left(-5 x^{2}+110 x-245\right) \mathrm{lb} \cdot f t \tag{4}
\end{align*}
$$

valid for $7 \mathrm{ft}<\mathrm{x}<17 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 3, page 4 of 6

6) Pass a section through the beam at a point between the right end of the distributed load and the right end of the beam.

$17 \mathrm{ft}<\mathrm{x}<20 \mathrm{ft}$Draw a free-body diagram of the portion of the beam to the left of the section and solve for V and M at the section.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 3, page 5 of 6

(8) $+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 40 \mathrm{lb}-100 \mathrm{lb}-\mathrm{V}=0$
$\int+\Sigma \mathrm{M}_{\mathrm{A}}=0:-(40 \mathrm{lb}) \mathrm{x}+(100 \mathrm{lb})[(\mathrm{x}-17 \mathrm{ft})+5 \mathrm{ft}]+\mathrm{M}=0$
Solving gives

$$
\begin{align*}
& V=-60 \mathrm{lb} \tag{5}\\
& M=(-60 x+1200) \mathrm{lb} \cdot \mathrm{ft} \tag{6}
\end{align*}
$$

valid for $17 \mathrm{ft}<\mathrm{x}<20 \mathrm{ft}$.
(9) Collect the results from Eqs. 1-6:

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 3, page 6 of 6

(10) Plot V and M versus x .

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 4, page 1 of 6

4. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x.

(1) Draw a free-body diagram and find the reactions.

Solving gives

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=-3 \mathrm{kip}=3 \mathrm{kip} \downarrow \\
& \mathrm{R}_{\mathrm{B}}=3 \mathrm{kip}
\end{aligned}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 4, page 2 of 6

(2) Pass a section through the beam at a point between the left end and the $27 \mathrm{kip} \cdot \mathrm{ft}$ moment couple.

$0<\mathrm{x}<3 \mathrm{ft}$
(3) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0:-3 \mathrm{kip}-\mathrm{V}=0 \\
& \varsigma+\Sigma \mathrm{M}_{\mathrm{x}}=0: \quad(3 \mathrm{kip}) \mathrm{x}+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=-3 \mathrm{kip} \tag{1}\\
& \mathrm{M}=-3 \mathrm{x} \mathrm{kip} \cdot \mathrm{ft} \tag{2}
\end{align*}
$$

valid for $0<\mathrm{x}<3 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 4, page 3 of 6

(4) Pass a section through the beam at a point between the 27 kip.ft and 18 kip.ft moment couples.

$3 \mathrm{ft}<\mathrm{x}<8 \mathrm{ft}$
(5) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0:-3 \mathrm{kip}-\mathrm{V}=0 \\
& \varsigma+\Sigma \mathrm{M}_{\mathrm{x}}=0: \quad(3 \mathrm{kip}) \mathrm{x}-27 \mathrm{kip} \cdot \mathrm{ft}+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& V=-3 \text { kip } \tag{3}\\
& M=(-3 x+27) \mathrm{kip} \cdot \mathrm{ft} \tag{4}
\end{align*}
$$

valid for $3 \mathrm{ft}<\mathrm{x}<8 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 4, page 4 of 6

Pass a section through the beam at a point between the $18 \mathrm{kip} \cdot \mathrm{ft}$
moment couple and the right end of the beam.

(7) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0:-3$ kip $-\mathrm{V}=0$
$\varsigma+\Sigma \mathrm{M}_{\mathrm{x}}=0:(3 \mathrm{kip}) \mathrm{x}-27 \mathrm{kip} \cdot \mathrm{ft}-18 \mathrm{kip} \cdot \mathrm{ft}+\mathrm{M}=0$
Solving gives

$$
\begin{align*}
& \mathrm{V}=-3 \mathrm{kip} \tag{5}\\
& \mathrm{M}=(-3 \mathrm{x}+45) \mathrm{kip} \cdot \mathrm{ft} \tag{6}
\end{align*}
$$

valid for $8 \mathrm{ft}<\mathrm{x}<15 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 4, page 5 of 6

(8) Collect the results from Eqs. 1-6:

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 4, page 6 of 6

(9) Plot V and M versus x .

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 5, page 1 of 6

5. Express the shear V and bending moment M in the horizontal portion ACDB of the beam as functions of x, the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M versus x.

(1) Draw a free-body diagram and find the reactions.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \mathrm{R}_{\mathrm{A}}-4 \mathrm{kip}-4 \mathrm{kip}+\mathrm{R}_{\mathrm{B}}=0 \\
& \varsigma+\Sigma \mathrm{M}_{\mathrm{A}}=0:-(4 \mathrm{kip})(2 \mathrm{ft})-(4 \mathrm{kip})(10 \mathrm{ft}) \\
& \quad+\mathrm{R}_{\mathrm{B}}(12 \mathrm{ft})=0
\end{aligned}
$$

Solving gives

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=4 \mathrm{kip} \\
& \mathrm{R}_{\mathrm{B}}=4 \mathrm{kip}
\end{aligned}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 5, page 2 of 6

(2) Pass a section through the beam at a point between the left end and the attachment point for the first arm.

$0<\mathrm{x}<4 \mathrm{ft}$
(3) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section. Note carefully that the 4-kip force on the left arm does not act on this free body.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 4 \mathrm{kip}-\mathrm{V}=0 \\
& ك+\Sigma \mathrm{M}_{\mathrm{x}}=0: \quad-(4 \mathrm{kip}) \mathrm{x}+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=4 \mathrm{kip} \tag{1}\\
& \mathrm{M}=4 \mathrm{x} \mathrm{kip} \cdot \mathrm{ft} \tag{2}
\end{align*}
$$

valid for $0<\mathrm{x}<4 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 5, page 3 of 6

(4) Pass a section through the beam at a point between the attachment points of the two arms.

$4 \mathrm{ft}<\mathrm{x}<8 \mathrm{ft}$
(5) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 4 \text { kip }-4 \mathrm{kip}-\mathrm{V}=0
$$

$$
\zeta+\Sigma \mathrm{M}_{\mathrm{x}}=0:-(4 \mathrm{kip}) \mathrm{x}+(4 \mathrm{kip})(\mathrm{x}-4 \mathrm{ft}+2 \mathrm{ft})+\mathrm{M}=0
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=0 \tag{3}\\
& \mathrm{M}=8 \mathrm{kip} \cdot \mathrm{ft} \tag{4}
\end{align*}
$$

valid for $4 \mathrm{ft}<\mathrm{x}<8 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 5, page 4 of 6

(6) Pass a section through the beam at a point between the point of attachment of the right arm and the right end of the beam.

$8 \mathrm{ft}<\mathrm{x}<12 \mathrm{ft}$
(8) Note that the 4-kip force on the right arm acts on the free body.
(7) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 4 \mathrm{kip}-4 \mathrm{kip}-4 \mathrm{kip}-\mathrm{V}=0 \\
& \begin{aligned}
\zeta+\Sigma \mathrm{M}_{\mathrm{x}}=0:-(4 \mathrm{kip}) \mathrm{x} & +(4 \mathrm{kip})(\mathrm{x}-2 \mathrm{ft}) \\
& +(4 \mathrm{kip})(\mathrm{x}-10 \mathrm{ft})+\mathrm{M}=0
\end{aligned}
\end{aligned}
$$

Solving gives

$$
\begin{gather*}
\mathrm{V}=-4 \mathrm{kip} \tag{5}\\
\mathrm{M}=(-4 \mathrm{x}+48) \mathrm{kip} \cdot \mathrm{ft} \tag{6}\\
\text { valid for } 8 \mathrm{ft}<\mathrm{x}<12 \mathrm{ft} .
\end{gather*}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 5, page 5 of 6

(9) Collect the results from Eqs. 1-6:

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 5, page 6 of 6

(10) Plot V and M versus x .

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 1 of 8

6. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x .

(1)

$+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}-4 \mathrm{kN}-8 \mathrm{kN}+\mathrm{R}_{\mathrm{C}}=0$
$\int+\Sigma M_{A}=0: R_{B}(2 \mathrm{~m})-(4 \mathrm{kN})(2 \mathrm{~m}+2 \mathrm{~m})$

$$
\begin{aligned}
& -(8 \mathrm{kN})(2 \mathrm{~m}+2 \mathrm{~m}+2 \mathrm{~m}) \\
& \quad+\mathrm{R}_{\mathrm{C}}(2 \mathrm{~m}+2 \mathrm{~m}+2 \mathrm{~m}+2 \mathrm{~m})=0
\end{aligned}
$$

(2) Two equations but three unknowns. An additional equation is needed.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 2 of 8

(3) Pass a section through the beam at a point immediately to the right of the hinge.

(4) Draw a free-body diagram of the portion of the beam to the right of the section.
(5) Because the section is next to a hinge, the moment is known to be zero there (that's what we mean by a "hinge").

(6) Write the equilibrium equation for the sum of moments about the hinge.

$$
\begin{equation*}
\int+\Sigma \mathrm{M}_{\text {hinge }}=0:-(8 \mathrm{kN})(2 \mathrm{~m})+\mathrm{R}_{\mathrm{c}}(2 \mathrm{~m}+2 \mathrm{~m})=0 \tag{3}
\end{equation*}
$$

(7) Note that we don't use the equation $\Sigma \mathrm{F}_{\mathrm{y}}=0$, because this equation would introduce an additional unknown, the shear V at the hinge.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 3 of 8

(8) Solving Eqs. 1-3 gives

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=-8 \mathrm{kN}=8 \mathrm{kN} \downarrow \\
& \mathrm{R}_{\mathrm{B}}=16 \mathrm{kN} \uparrow \\
& \mathrm{R}_{\mathrm{C}}=4 \mathrm{kN} \uparrow
\end{aligned}
$$

(9) Pass a section through the beam at a point

$0<\mathrm{x}<2 \mathrm{~m}$
(10) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$\zeta+\Sigma \mathrm{M}_{\mathrm{x}}=0:(8 \mathrm{kN}) \mathrm{x}+\mathrm{M}=0$
Solving gives

$$
\begin{align*}
& \mathrm{V}=-8 \mathrm{kN} \tag{4}\\
& \mathrm{M}=(-8 \mathrm{x}) \mathrm{kN} \cdot \mathrm{~m} \tag{5}
\end{align*}
$$

valid for $0<\mathrm{x}<2 \mathrm{~m}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 4 of 8

(11) Pass a section through the beam at a point

$2 \mathrm{~m}<\mathrm{x}<4 \mathrm{~m}$
(12) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0:-8 \mathrm{kN}+16 \mathrm{kN}-\mathrm{V}=0 \\
& \zeta+\Sigma \mathrm{M}_{\mathrm{x}}=0:(8 \mathrm{kN}) \mathrm{x}-(16 \mathrm{kN})(\mathrm{x}-2 \mathrm{~m})+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=8 \mathrm{kN} \tag{6}\\
& \mathrm{M}=(8 \mathrm{x}-32) \mathrm{kN} \cdot \mathrm{~m} \tag{7}
\end{align*}
$$

valid for $2 \mathrm{~m}<\mathrm{x}<4 \mathrm{~m}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 5 of 8

(13) Pass a section through the beam at a point

$4 \mathrm{~m}<\mathrm{x}<6 \mathrm{~m}$
(14) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{gathered}
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \quad-8 \mathrm{kN}+16 \mathrm{kN}-4 \mathrm{kN}-\mathrm{V}=0 \\
\begin{aligned}
& \int \\
& \mathrm{S} \Sigma \mathrm{M}_{\mathrm{x}}=0: \\
&(8 \mathrm{kN}) \mathrm{x}-(16 \mathrm{kN})(\mathrm{x}-2 \mathrm{~m}) \\
&+(4 \mathrm{kN})(\mathrm{x}-4 \mathrm{~m})+\mathrm{M}=0
\end{aligned}
\end{gathered}
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=4 \mathrm{kN} \tag{8}\\
& \mathrm{M}=(4 \mathrm{x}-16) \mathrm{kN} \cdot \mathrm{~m} \tag{9}
\end{align*}
$$

valid for $4 \mathrm{~m}<\mathrm{x}<6 \mathrm{~m}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 6 of 8

(15) Pass a section through the beam at a point between

$6 \mathrm{~m}<\mathrm{x}<8 \mathrm{~m}$

16 Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
+\uparrow \sum \mathrm{F}_{\mathrm{y}}=0: & -8 \mathrm{kN}+16 \mathrm{kN}-4 \mathrm{kN} \\
& -8 \mathrm{kN}-\mathrm{V}=0 \\
\int+\sum \mathrm{M}_{\mathrm{x}}=0: & (8 \mathrm{kN}) \mathrm{x}-(16 \mathrm{kN})(\mathrm{x}-2 \mathrm{~m}) \\
& +(4 \mathrm{kN})(\mathrm{x}-4 \mathrm{~m}) \\
& +(8 \mathrm{kN})(\mathrm{x}-6 \mathrm{~m})+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& \mathrm{V}=-4 \mathrm{kN} \tag{10}\\
& \mathrm{M}=(-4 \mathrm{x}+32) \mathrm{kN} \cdot \mathrm{~m} \tag{11}
\end{align*}
$$

valid for $6 \mathrm{~m}<\mathrm{x}<8 \mathrm{~m}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 7 of 8

(17) Collect the results from Eqs. 4-11:
$\left.\begin{array}{ll}0<\mathrm{x}<2 \mathrm{~m} & \mathrm{~V}=-8 \mathrm{kN} \\ \mathrm{M}=-8 \mathrm{x} \mathrm{kN} \cdot \mathrm{m} \\ 2 \mathrm{~m}<\mathrm{x}<4 \mathrm{~m} & \mathrm{~V}=8 \mathrm{kN} \\ \mathrm{M}=(8 \mathrm{x}-32) \mathrm{kN} \cdot \mathrm{m} \\ 4 \mathrm{~m}<\mathrm{x}<6 \mathrm{~m} & \mathrm{~V}=4 \mathrm{kN} \\ \mathrm{M}=(4 \mathrm{x}-16) \mathrm{kN} \cdot \mathrm{m} \\ 6 \mathrm{~m}<\mathrm{x}<8 \mathrm{~m} & \mathrm{~V}=-4 \mathrm{kN} \\ \mathrm{M}=(-4 \mathrm{x}+32) \mathrm{kN} \cdot \mathrm{m}\end{array}\right\} \leftarrow$ Ans.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 6, page 8 of 8

(18) Plot V and M versus x .

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 1 of 7

7. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x.

$$
\begin{align*}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \mathrm{R}_{\mathrm{A}}-20 \mathrm{kip}-32 \mathrm{kip}+\mathrm{R}_{\mathrm{B}}=0 \tag{1}\\
& \int+\Sigma \overline{\mathrm{M}}_{\mathrm{A}}=0: \mathrm{M}_{\mathrm{A}}-(20 \mathrm{kip})(5 \mathrm{ft})-(32 \mathrm{kip})(5 \mathrm{ft}+5 \mathrm{ft}+4 \mathrm{ft}) \\
& \quad+\mathrm{R}_{\mathrm{B}}(5 \mathrm{ft}+5 \mathrm{ft}+8 \mathrm{ft})=0
\end{align*}
$$

(3) Two equations but three unknowns. An additional equation is needed.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 2 of 7

(4) Pass a section through the beam at a point immediately to the right of the hinge.

(5) Draw a free-body diagram of the portion of the beam to the right of the section.
(6) Because the section is next to a hinge, the moment is known to be zero there (that's what we mean by a "hinge").

(7) Write the equilibrium equation for the sum of moments about the hinge.

$$
\begin{equation*}
\varsigma+\Sigma \mathrm{M}_{\text {hinge }}=0:-(32 \mathrm{kip})(4 \mathrm{ft})+\mathrm{R}_{\mathrm{B}}(8 \mathrm{ft})=0 \tag{3}
\end{equation*}
$$

(8) Note that we don't use the equation $\Sigma \mathrm{F}_{\mathrm{y}}=0$, because this equation would introduce an additional unknown, the shear V at the hinge.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 3 of 7

(9) Solving Eqs. 1-3 gives

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=36 \mathrm{kip} \\
& \mathrm{R}_{\mathrm{B}}=16 \mathrm{kip} \\
& \mathrm{M}_{\mathrm{A}}=260 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

(10) Pass a section through the beam at a point between
the left end and the 20-kip force.

$0<\mathrm{x}<5 \mathrm{ft}$
(11) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

Solving gives

$$
\begin{equation*}
\mathrm{V}=36 \mathrm{kip} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
M=(36 x-260) \mathrm{kip} \cdot f t \tag{5}
\end{equation*}
$$

valid for $0<\mathrm{x}<5 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 4 of 7

(12) Pass a section through the beam at a point between the 20-kip force and the hinge.

$5 \mathrm{ft}<\mathrm{x}<10 \mathrm{ft}$
(13) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 36 \mathrm{kip}-20 \mathrm{kip}-\mathrm{V}=0 \\
& \varsigma+\Sigma \mathrm{M}_{\mathrm{x}}=0: 260 \mathrm{kip} \cdot \mathrm{ft}-(36 \mathrm{kip}) \mathrm{x}+20 \mathrm{kip}(\mathrm{x}-5 \mathrm{ft})+\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& V=16 \text { kip } \tag{6}\\
& M=(16 x-160) k i p \cdot f t \tag{7}
\end{align*}
$$

valid for $5 \mathrm{ft}<\mathrm{x}<10 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 5 of 7

(14) Pass a section through the beam at a point between the hinge and the right end of the beam.

$10 \mathrm{ft}<\mathrm{x}<18 \mathrm{ft}$
(15) Draw a free-body diagram of the portion of the beam to the left of the section and find V and M at the section.

$$
\begin{aligned}
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: 36 \mathrm{kip}-20 \mathrm{kip} \\
& \quad-(4 \mathrm{kip} / \mathrm{ft})(\mathrm{x}-10 \mathrm{ft})-\mathrm{V}=0 \\
& \begin{array}{r}
\mathrm{S}
\end{array} \mathrm{+} \Sigma \mathrm{M}_{\mathrm{x}}=0: 260 \mathrm{kip} \cdot \mathrm{ft}-(36 \mathrm{kip}) \mathrm{x}+20 \mathrm{kip}(\mathrm{x}-5 \mathrm{ft}) \\
& +(4 \mathrm{kip} / \mathrm{ft})(\mathrm{x}-10 \mathrm{ft})\left(\frac{\mathrm{x}-10 \mathrm{ft}}{2}\right) \\
& +\mathrm{M}=0
\end{aligned}
$$

Solving gives

$$
\begin{align*}
& V=-4 x+56 \text { kip } \tag{8}\\
& M=\left(-2 x^{2}+56 x-360\right) \text { kip } \cdot f t \tag{9}
\end{align*}
$$

valid for $10 \mathrm{ft}<\mathrm{x}<18 \mathrm{ft}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 6 of 7

(16) Collect the results from Eqs. 4-9:

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 7, page 7 of 7

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 1 of 8

8. Express the shear V and bending moment M as functions of x , the distance from the left end of the beam to an arbitrary point on the beam. Plot V and M vs. x.

(1) Draw a free-body diagram and find the reactions.

(2) Replace the trapezoidal distributed load by the sum of a rectangular and triangular load.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 2 of 8

(3) Resultant of rectangular load

$$
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0: \mathrm{R}_{\mathrm{A}}-24 \mathrm{kN}-12 \mathrm{kN}+\mathrm{R}_{\mathrm{B}}=0
$$

$$
\zeta+\Sigma \mathrm{M}_{\mathrm{A}}=0:-(12 \mathrm{kN})(2 \mathrm{~m})+\mathrm{R}_{\mathrm{B}}(6 \mathrm{~m})=0
$$

Solving gives

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=32 \mathrm{kN} \\
& \mathrm{R}_{\mathrm{B}}=4 \mathrm{kN}
\end{aligned}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 3 of 8

(7) Pass a section through the beam at a point between the left end and the support at A.

(8) Draw a free-body diagram of the portion of the beam to the left of the section and solve for V and M .
$2 \mathrm{kN} / \mathrm{m}$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 4 of 8

(9) Before we can solve for V and M , we have to express w as a function of x . This can be done by noting that w is a linear function of x and then using the slope-intercept equation for a line.

(10) Now the distributed load on the free-body of length x can be replaced by the resultant of a rectangular and triangular load.
(11) Resultant of rectangular load

Free-body diagram

(12) Resultant of triangular load

$$
=\frac{x}{2}(w-2)
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 5 of 8

(13) $+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0:-(2 \mathrm{kN} / \mathrm{m}) \mathrm{x}-\frac{\mathrm{x}}{2}(\mathrm{w}-2)-\mathrm{V}=0$
$\int+\Sigma \mathrm{M}_{\mathrm{x}}=0:(2 \mathrm{kN} / \mathrm{m})(\mathrm{x})\left(\frac{\mathrm{x}}{2}\right)+\left[\frac{\mathrm{x}}{2}(\mathrm{w}-2)\left(\frac{\mathrm{X}}{3}\right)\right]+\mathrm{M}=0$
Replacing w in these equations by $\mathrm{w}=(\mathrm{x} / 6)+2$ from
Eq. 1 and solving gives

$$
\begin{align*}
& \mathrm{V}=\left(-\frac{\mathrm{x}^{2}}{12}-2 \mathrm{x}\right) \mathrm{kN} \tag{2}\\
& \mathrm{M}=\left(-\frac{\mathrm{x}^{3}}{36}-\mathrm{x}^{2}\right) \mathrm{kN} \cdot \mathrm{~m} \tag{3}
\end{align*}
$$

valid for $0<x<6 \mathrm{~m}$.
(14) Pass a section through the beam at a point between the support at A and the support at B .

[^0]
8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 6 of 8

(15) Free-body diagram

$6 \mathrm{~m}<\mathrm{x}<12 \mathrm{~m}$
(16) We can save some work if we note that this free-body diagram is identical to the previous one except that an additional vertical force of 32 kN is present. This increases the shear in Eq. 2 by 32 kN and the moment in Eq. 3 by $(32 \mathrm{kN})(\mathrm{x}-6 \mathrm{~m})$ so

$$
\begin{align*}
& \mathrm{V}=\left(-\frac{\mathrm{x}^{2}}{12}-2 \mathrm{x}+32\right) \mathrm{kN} \tag{4}\\
& \mathrm{M}=\left(-\frac{\mathrm{x}^{3}}{36}-\mathrm{x}^{2}+32 \mathrm{x}-192\right) \mathrm{kN} \cdot \mathrm{~m} \tag{5}
\end{align*}
$$

valid for $6 \mathrm{~m}<\mathrm{x}<12 \mathrm{~m}$.

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 7 of 8

(17) Collect the results from Eqs. 4-11:

$$
\begin{aligned}
& 0<x<6 m \quad V=\left(-\frac{1}{12} x^{2}-2 x\right) k N \\
& M=\left(-\frac{1}{36} x^{3}-x^{2}\right) k N \cdot m \\
& 6 \mathrm{~m}<\mathrm{x}<12 \mathrm{~m} \quad \mathrm{~V}=\left(-\frac{1}{12} \mathrm{x}^{2}-2 \mathrm{x}+32\right) \mathrm{kN} \\
& M=\left(-\frac{1}{36} x^{3}-x^{2}+32 x-192\right) k N \cdot m
\end{aligned}
$$

8.2 Shear and Bending-Moment Diagrams: Equation Form Example 8, page 8 of 8

(18) Plot V and M versus x .

[^0]: $6 \mathrm{~m}<\mathrm{x}<12 \mathrm{~m}$

